

Polyherbal Interventions In Parkinson's Disease: Mechanistic And Neuroprotective Benefits

Sahana E, Harshith J C, Bharathi D R, Chandan K, Syed Sagheer Ahmed

Department of Pharmacology, Faculty of Pharmacy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B G Nagar, Karnataka, 571448

***Corresponding author:**

Dr. D. R. Bharathi,
Department of Pharmacology,
Sri Adichunchanagiri College of
Pharmacy, Adichunchanagiri
University, B. G. Nagar,
Karnataka, India.

Email id:

Pharmacology.saccp@accp.co.in

Received on: 24 July 2025

Revised on: 14 August 2025

Accepted on: 30 September 2025

DOI:

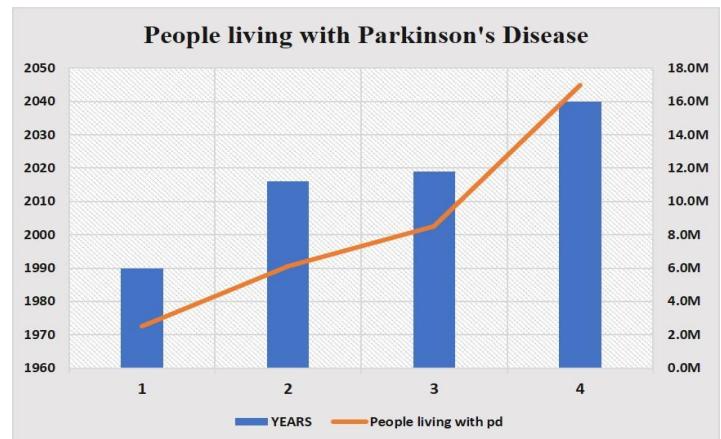
<https://doi.org/10.64842/46bz2826>

Scan QR to visit JAPDD

Abstract

Parkinson's disease (PD) is a progressive neurodegenerative disorder marked by motor impairment, a decrease in dopamine levels, and oxidative stress. Current therapies primarily alleviate symptoms but have limitations in preventing the progression of the disease. Polyherbal formulations, which consist of various plant extracts, have emerged as promising treatment options due to their synergistic effects in addressing the complex pathology of PD. According to research, employing Polyherbal Formulations (PHFs) that combine several plants can produce better results than using plant extracts alone or their additive effects. This review focuses on the potential mechanisms of action through which PHFs act in treating Parkinson's disease. Additionally, showcasing their therapeutic potential through preclinical and clinical data highlights their efficacy and synergistic qualities. The article explores the neuroprotective advantages emphasizing how well they may treat neuroinflammation, oxidative stress, neurotransmitter modulation, and α -synuclein aggregation mitigation. It emphasizes PHFs importance as supplementary and alternative approaches to controlling neurodegenerative illnesses and explores how they may improve patient outcomes, decrease side effects, and increase therapeutic efficacy. This thorough evaluation highlights the need for additional study to confirm efficacy, improve formulations, and elucidate safety profiles, opening the door to novel, nature-based Parkinson's disease treatment options.

Keywords: Parkinson's disease, Polyherbal formulation, Synergism, Clinical trial, Herbal medicine, Challenges


Introduction

Neurodegenerative diseases (ND) involve the gradual deterioration of neuronal structure or function, frequently linked to neuronal loss. Parkinson's disease (PD), Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS) and prion's disease (PrD) are few examples of ND [1]. PD is a long-lasting and advancing ND that impacts at

least 1% of individuals by the time they reach age 70 [2]. It is marked by movement difficulties, including tremors, stiffness, and slow movements (bradykinesia), along with a range of non-motor manifestations, including sleep disturbances, autonomic dysregulation, cognitive impairment, neuropsychiatric disorders, gastrointestinal dysfunction, weight fluctuations, visual disturbances, and

fatigue [3]. Cognitive impairments, mental health issues, and the neurodegenerative effects of levodopa-induced dyskinesia are additional anomalies linked to PD [4]. Despite the fact that the signs and treatments for PD were initially referenced in ancient texts like "Indian Ayurveda" (5000 BC) and the Chinese medical classic "Nei-Jing" (500 BC), it was James Parkinson, a British doctor, who first gave a detailed account of the condition, referring to it as "the shaking palsy" in his writings, "An Essay on the Shaking Palsy" in 1817 [5,6]. The main characteristics James Parkinson outlines are postural instability, muscle weakness, and a resting tremor that lessens with intentional movement, resulting in a distinctive forward-leaning posture and shuffling stride [7]. PD is the neurological disorder with the highest growth rate worldwide regarding mortality and disability [8], as illustrated in Figure 1.

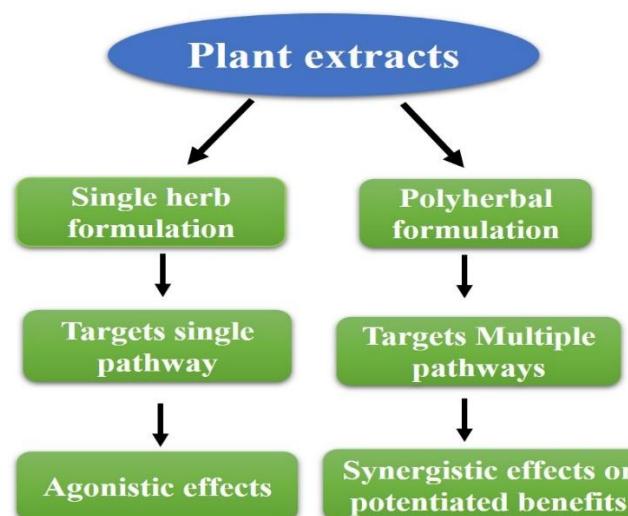

Global Health Estimates the incidence of PD has increased twofold in the last quarter-century, impacting more than 8.5 million individuals in 2019. The rise in disability and mortality rates linked to PD is outpacing that of any other neurological condition. In 2019, Parkinson's disease was responsible for 5.8 million disability-adjusted life years, marking an 81% increase since the year 2000, and it led to 329,000 fatalities, which is more than twice the number reported in 2000 [9]. There was a notable rise in the reported cases, going from 2.5 million in 1990 to 6.1 million in 2016. It is anticipated that by 2040, the worldwide prevalence of PD will surpass 17 million cases [10].

Figure 1: Illustrates the prevalence data of Parkinson's disease as reported by the World Health Organization.

Although PD was identified over 200 years ago, no disease-modifying drugs have been developed. Patients rely on symptomatic relief through conventional medications like dopamine agonists (ropinirole, rotigotine, bromocriptine, and pramipexole), COMT-inhibitors, MAO-B inhibitors, and non-pharmacological treatments like deep brain stimulation, MRI-guided focused ultrasound, rehabilitation, and exercise [11]. For decades, levodopa has been the primary monotherapy, providing consistent clinical benefits in the early stage as it raises dopamine levels and is the best way to treat PD. However, numerous individuals experience motor issues after several years of using these conventional medications [12,13]. After long-term levodopa medication, dyskinesia and the return of Parkinsonian symptoms are common [14]. Treatment with these conventional medications can cause adverse effects including queasiness, vomiting, postural low blood pressure (a drop in blood pressure when standing), drowsiness, cognitive confusion, sleep disruptions,

hallucinations, and involuntary movements (dyskinesias) [15].

Figure 2: Single Herbal vs. Polyherbal Formulation

New treatments aimed at addressing the root causes of neuronal death are crucial. Since medicinal plants and herbs comprise a complex blend of phytocompounds with a wide range of pharmaco-biological significance, herbal therapies are explored for treating several illnesses. A variety of therapeutic methods continue to rely heavily on plants as a source of medications [16]. Natural products from medicinal plants, fruits, and vegetables have been utilized for a long time to help manage PD because of their antioxidant, anti-inflammatory, and neuroprotective benefits. These include preventing iron accumulation, protein misfolding, and supporting mitochondrial and proteasomal functions [17]. While individual plant phytochemicals are well-known, their therapeutic levels are often insufficient. However, studies show that combining plants of varying potencies can

produce more effective results than using them individually [18]. This review offers detailed and up-to-date information on various polyherbal formulations used to manage PD, primarily focusing on their mechanism and therapeutic potential.

Herbs treating Parkinson's disease

The compounds obtained from plants provide a safe and natural substitute for prescription medications in addressing neuroinflammation in PD and other neurodegenerative illnesses [19]. Numerous preclinical, clinical, *in vitro*, and *in vivo* investigations have examined the potential application of herbs in treating PD over the last several decades, and the level of safety related to the utilization of herbal remedies is fairly large in addition to their efficacy [20].

Due to their multilevel function characteristics and remarkable efficacy (in certain cases) with fewer side effects, herbal medicines, which are the foundation of traditional medicine, have gradually gained acceptance for application in the management of different illnesses worldwide [21]. Many ancient herbal medicines, including those involving plants like *Withania somnifera*, *Mucuna pruriens*, *Tinospora*, *Acanthopanax*, *Alpinia*, and *Astragalus*, have been utilized in India to treat neurological disorders. The components or extracts of herbal remedies have been shown to have consistent and significant effects on PD models in contemporary pharmacological research [17]. The table below includes some of the plant-derived compounds employed in treating PD (**Table**

1).

Table 1: Therapeutic Effects and Dosage of Plant-Based Compounds in Parkinson's Disease Animal Models

Plant	Plant part used	Active components	Animal model	Dose	Result	Reference
<i>Gynostemma pentaphyllum</i>	Leaves	Gypenoside derivatives	6-OHDA-induced PD in rats	10 and 30 mg/kg	Enhanced the reduction of TH-immunopositive neurons in the rat brain brought on by 6-OHDA damage. Following the injury, it also restored the levels of norepinephrine, homovanillic acid, 3,4-dihydroxyphenylacetic acid, and dopamine.	[22]
<i>Curcuma longa</i>	Rhizome	Curcuminoids	MPTP-induced PD in mice	150mg/kg	Averted the loss of dopamine and tyrosine hydroxylase (TH) immune response caused by MPTP. It also restored the expression of glial fibrillary acidic protein (GFAP) and inducible nitric oxide synthase (iNOS) proteins.	[23]
			Rotenone-induced PD in mice	50, 100 and 200mg/kg	It markedly enhanced behavioral changes, reduced oxidative damage, and boosted the activities of mitochondrial enzyme complexes. It also decreased the elevated levels of acetylcholine esterase enzyme.	[24]
<i>Punica granatum L</i>	Seeds	Propyl gallate	500 mg/kg	Dopamine (DA) and 3,4-Dihydroxyphenylacetic acid (DOPAC) levels increased, nuclear factor-kappa-B (NF-KB) was downregulated, the Interleukin-10 (IL-10) level increased, and the cytokine level decreased.	[25]	
		Nobiletin				
<i>Punica granatum L</i>	Juice	Ellagic acid	Paraquat-induced PD in mice	5ml	The level of transforming growth factor (TGF- β) significantly decreased while Glial cell line-derived neurotrophic factor (GDNF) substantially increased.	[25]
		Ellagic acid				
		Vitexin	5ml			
		isovitexin				

<i>Zingiber officinale</i>	Rhizome	2-Butanone Zingiberene Zingerone	Rotenone-induced PD in mice	50 mg/kg 100mg/kg	Inhibited the development of Lewy bodies by blocking the aggregation of α -Syn proteins in the nigrostriatal region, reducing the release of pro-oxidant and pro-inflammatory factors and the expression of COX-2 protein, enhancing glutathione enzyme activity, and slightly lessening the degeneration of dopaminergic neurons.	[26]
<i>Bacopa monnieri</i>	Plant	Bacosides	Rotenone-induced PD in rats	40mg/kg	Pre-treatment with <i>Bacopa monnieri</i> notably reduced ($p < 0.01$) the levels of α -synuclein when compared to the rotenone-injected subjects. Elevated levels of IL-1 β and Tumour necrosis factor- α (TNF- α) during treatment mitigated the increased expression of α -synuclein. It also lowered ROS production and enhanced antioxidant activity in the striatum.	[27]
<i>Spondias mombin L.</i>	Leaves	Cyclogallipharaol dl- α -tocopherol Quercetin Rutin	Rotenone-induced PD in zebrafish	5mg/L, 15mg/L and 25mg/L	Decreased thiobarbituric acid reactive substances (TBARS) and total thiol levels. Increased Catalase (CAT), Superoxide dismutase (SOD), and glutathione (GSH) enzymes and decrease in Glutathione-S-Transferase (GST) activity in Zebrafish.	[28]
<i>Trigonella foenum-graecum</i>	Seeds	Trigonelline	6-OHDA and MPTP-induced PD in rats	10mg/kg, 30mg/kg and 100mg/kg	Showed a considerable improvement in motor impairment and a notable rise in the count of ipsilateral rotations.	[29]
<i>Centella asiatica</i>	Whole plant	Madecassoside Asiaticoside	Rotenone-induced PD in rats	10mg/kg, 30mg/kg and 100mg/kg	Standardized extract of <i>Centella asiatica</i> (ECa233) (30 mg/kg) provided protection against the inhibition of mitochondrial complex-I, lowered malondialdehyde (MDA) levels, and enhanced the expression of SOD and CAT.	[30]
<i>Withania somnifera</i>	Root	Withaferin A	MPTP-induced PD in mice	100mg/kg	A mouse that received MPTP treatment exhibited decreased levels of DA, DOPAC, homovanillic acid (HVA), GSH, and	[31]

					glutathione peroxidase (GPx) while showing increased levels of TBARS in comparison to the control group.	
<i>Allium sativum</i>	Bulb	Garlic derived compounds	6-OHDA-induced PD in Rats	500mg/kg	The number of TH positive cells in the groups treated with garlic extract was considerably greater ($p<0.001$) compared to the lesion group. The motor impairments showed considerable improvement in hanging, rotarod, open-field, and apomorphine-induced rotational assessments.	[32]
<i>Smilax china</i>	Bark	Tannins and fibres	Rotenone-induced PD and in Wistar rats	100mg/kg and 200mg/kg	The body weight, mobility, coordination, and occurrence of catalepsy in animals treated with Smilax China ethanolic extract all showed improvement. Furthermore, it safeguarded the brain from oxidative stress by enhancing SOD levels in the group induced with rotenone. The degradation of α -synuclein and inflammation were diminished in the substantia nigra, basal ganglia, and vagus nerve of the treated groups.	[33]
<i>Vitex negundo</i>	Leaves	Vitexin	Haloperidol induced PD in rats	100mg/kg, 200mg/kg and 400mg/kg	Strong antioxidant activity and inhibition of Acetylcholinesterase (AChE) were shown in vitro. Significant pathological changes, which included elevated levels of AChE, Butyrylcholinesterase (BChE), and MDA alongside reduced levels of GSH, SOD, CAT, and DA, were notably reversed in rats administered haloperidol. Treatment with <i>V. negundo</i> at a dosage of 400 mg/kg markedly enhanced dopaminergic activity, bolstered antioxidant defenses, and reinstated cholinergic function.	[34]

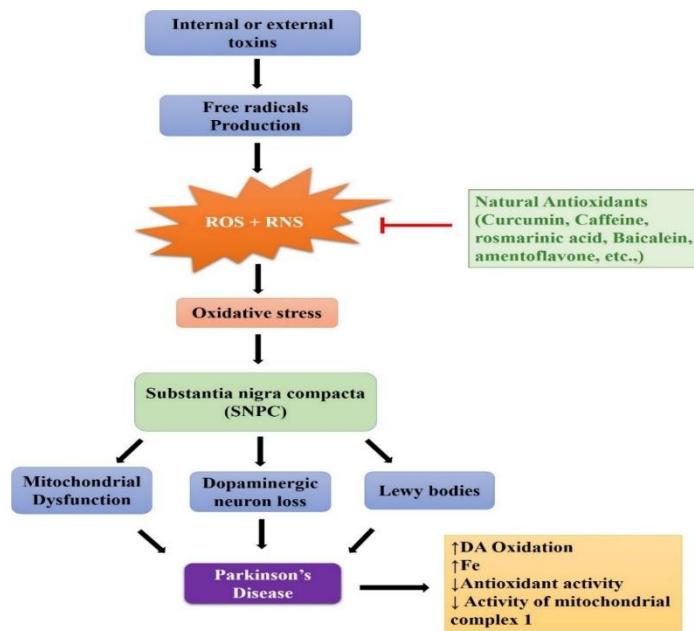
Polyherbal Formulations: Synergistic Effects and Mechanisms

Although many plants include well-known active

phytochemical components, the compounds are usually found in minimal concentrations and rarely sufficiently produce the desired therapeutic effects.

Because of this, scientific studies suggest that combining several plants with varying potencies could theoretically produce greater results than utilizing them separately or adding up their distinct effects [18].

Polyherbal formulations (PHFs) are highly effective in treating various diseases, offering a favorable risk-benefit ratio due to their efficacy at low doses and safety at higher doses. As natural products, PHFs are cost-effective, environmentally friendly, and widely accessible, making them increasingly popular, particularly in rural regions and developing countries where contemporary medical treatments are frequently too expensive [35,36]. Because of the synergism, PHFs provide advantages that are impossible with single herbal formulations. It lowers the chance of unfavourable side effects by enabling stronger therapeutic results with lower dosages. Additionally, PHFs improve patient comfort by removing the need to take many single herbal formulations at once [37]. Synergistic activity is important in herbal therapeutics, as numerous studies have shown that herbal extracts as whole or multiple herbs in complex formulations give superior efficacies to similar doses of individual active components or herbs when used alone [38]. Clinical and pharmacological studies have confirmed the therapeutic effects of many PHFs. PHFs are renowned for their remarkable efficacy in treating various ailments. When the right herbs are combined to make PHFs, the therapeutic benefits of

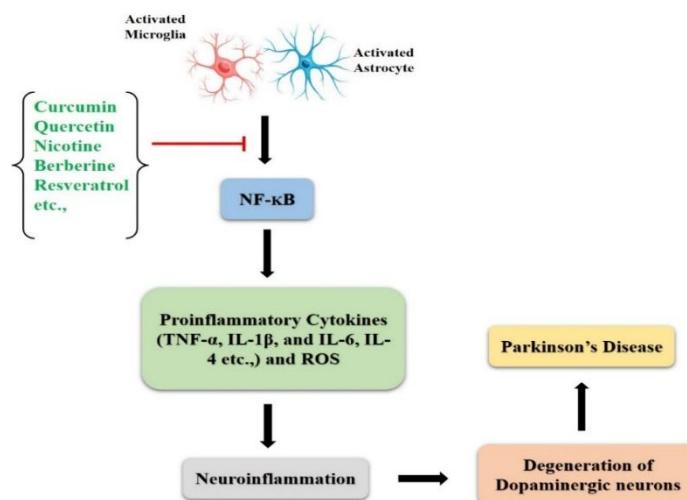

herbal remedies are enhanced by the presence of many phytoconstituents [37].

Possible ways through which Polyherbal May Aid Parkinson's Management

Antioxidant pathway

Oxidative stress is widely recognized as one of the primary pathogenetic processes responsible for neuronal loss in PD [39]. It results from a breakdown in antioxidative processes involving GSH, SOD, and DJ-1(protein) in people with PD, which upsets the balance of reactive oxygen species (ROS) [40]. Elevated lipid peroxidation (LPO) and DNA damage in the Substantia Nigra (SN) are indicators of oxidative harm resulting from an abundance of ROS in PD brains [39]. A vital element of the therapeutic strategy for treating PD is using antioxidants to lower oxidative stress [41]. Research conducted both *in vitro* and *in vivo* on Parkinson's models has demonstrated that natural and endogenous antioxidants like polyphenols, coenzyme Q10, and vitamins A, C, and E offer protective benefits against neuronal death caused by oxidative stress [42]. Curcumin, baicalein, quercetin, resveratrol, kaempferol, amentoflavone, caffeine, rosmarinic acid, neoandrographolide, naringenin are some of the examples of phytochemicals originating from plants that may primarily demonstrate their biological activity through antioxidant pathways. These substances aid in reducing oxidative stress, which is a major factor in several clinical disorders [43-48]. In PD, chrysin

pretreatment preserves SOD activity and GSH levels while lowering LPO and oxidative strain. In PC12 cells, chrysin also obstructs NF- κ B phosphorylation and transcriptional activity, lowers intracellular Nitric oxide (NO), and downregulates iNOS production [49,50]. In SH-SY5Y cells, vanillin possesses potent neuroprotective potential by strengthening antioxidant defences, diminishing LPO and NO levels, and reducing rotenone-induced ROS, mitochondrial dysfunction, caspase activation, and signalling molecule expression in PD [51-53].


Figure 3: Phytochemicals function as neuroprotective agents against oxidative stress in PD

Anti-Neuroinflammatory pathway

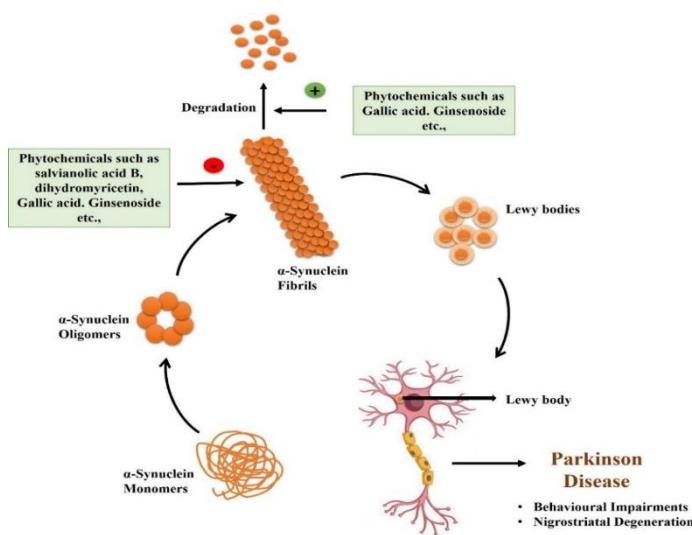
Neuronal degeneration in PD is associated with persistent neuroinflammation, mainly driven by microglia, along with involvement from astrocytes and oligodendrocytes [54]. Activated microglia

produce ROS that result in oxidative harm, which consequently causes dopaminergic neurons to degenerate in PD [55]. Increased concentrations of growth factors like Epidermal growth factor (EGF) and Transforming Growth Factor- β 1 (TGF- β 1) and cytokines such as Tumour necrosis factor- α (TNF- α), Interleukin (IL)-1 β , IL-2, IL-6, and IL-4 are significant indicators of inflammation in the striatum and cerebrospinal fluid of individuals with PD [56]. Nicotine, berberine, capsaicin, and kavalactone are phytochemicals with anti-inflammatory qualities that lessen inflammation in PD by reducing oxidative stress and TNF- α levels [57]. Significant anti-inflammatory and neuroprotective benefits are demonstrated by extracts of *Ginkgo biloba*, *Lindera neesiana*, *Scutellaria baicalensis*, spicatoside A (*Liriope platyphylla*), quercetin, apigenin, and ginger components (6-gingerol, 6-shogaol, 6-paradol, and zingerone) [58-60]. By lowering neuroinflammation, broccoli extract containing sulforaphane also provides neuroprotection [61]. DA neurons are protected from lipopolysaccharide (LPS)-induced toxicity by 2,3,5,4'-Tetrahydroxystilbene-2-O-beta-d-glucoside (TSG), the primary bioactive compound in *Polygonum multiflorum*. TSG also increases astrocyte-derived neurotrophic support and reduces microglia-induced neuroinflammation [62]. Furthermore, diallyl sulfide and curcumin (found in *Allium sativum*) inhibit pro-inflammatory substances like TNF- α , which makes them promising treatments for neurodegenerative illnesses like PD

[63,64]. In the SN of PD rats, polyphenols extracted from *Toona sinensis* seeds protect dopaminergic neurons by decreasing the quantity of microglia, and astrocytes is decreased along with the downregulation of mRNA and protein levels of inflammatory markers TNF- α and Cyclooxygenase-2 (COX-2) [65]. **Figure 4** represents the mechanism of Phytochemicals in an anti-neuroinflammatory pathway in PD.

Figure 4: Role of Phytochemicals as Neuroprotective Agents Against Neuroinflammation in PD

Neurotransmitters modulation


Under pathological circumstances, an excess of glutamate in the synaptic cleft can over-activate glutamate receptors, resulting in neuronal death [66]. Elevated glutamate levels in the basal ganglia are directly linked to motor incoordination and dyskinesias experienced by PD patients [67]. The balance between dopamine and acetylcholine is necessary for the striatum's motor function, whereas

glutamatergic and Gamma-Aminobutyric Acid (GABA) inputs regulate dopaminergic activity in the Substantia Nigra pars compacta (SNpc). Serotonin (5-HT) producing neurons also affect the release of dopamine in the striatum in PD [68]. The onset and progression of both motor and non-motor symptoms in PD may be due to dysregulation of the GABA system [69]. Phytochemicals like Naringenin, hesperetin, and quercetin have demonstrated the ability to improve DA uptake. By enhancing the synthesis of 5-HT, naringenin also stimulates serotonergic neurotransmission [70]. Ginsenoside Rb1 exhibits promise in PD models and offers neuroprotection against glutamate-induced excitotoxicity by altering glutamate signaling [71,72]. Several tea catechins, including epicatechin, epigallocatechin-3-gallate, catechin, and flavonol-like quercetin, are potent human catechol-O-methyltransferase (COMT) inhibitors. Tea flavonoids are a highly powerful class of neuroprotectors due to the actions of catechins and their strong antioxidant qualities [73,74].

Mitigation of α -synuclein Aggregation

A primary focus on treatment for PD is α -synuclein and a key approach to improving the condition is to prevent its aggregation, oligomerization, and fibrillation. Studies have shown that plant extracts and phytochemicals have neuroprotective effects on oligomerization and fibrillation by targeting several crucial stages of α -synuclein synthesis [75]. In PD, Curcumin prevented glial-associated inflammation,

restored GSH levels, and inhibited the production of ROS to mediate its inhibitory action on α -synuclein aggregation [76]. Treatment with dihydromyricetin (DHM), a key compound isolated from the stems and leaves of *Ampelopsis grossedentata* and salvianolic acid B (Sal B), a bioactive component found in *Salvia miltiorrhiza Bunge*, both *in vitro* and *in vivo*, successfully prevented the accumulation and aggregation of α -Syn fibrils [77]. Gallic acid inhibits the development of α -synuclein amyloid fibrils [78], and ginsenoside-Rg1, one of the active ingredients in ginseng, also lowers oligomeric, phosphorylated, and disease-related α -synuclein in the SNpc in PD [79]. **Figure 5** represents the role of phytochemicals in the mitigation of α -synuclein aggregation in PD.

Figure 5: Role of Phytochemicals as Neuroprotective Agents Against α -synuclein aggregation in PD
Polyherbal Formulations in Parkinson's Disease
Moringa concanensis* and *Sesbania grandiflora

Manjusha et al. 2022 evaluated the neuroprotective effects of ethanolic extracts of *Sesbania grandiflora* (EESG), *Moringa concanensis nimmo* (EEMC), and their combination (MCSG-CE) which was made by employing a 1:1 ratio of their ethanolic extracts. They were tested on rats with 6-hydroxy dopamine (6-OHDA)-induced Parkinsonism. 6-OHDA+levodopa (6 mg/kg, p.o.), 6-hydroxydopamine+EEMC (100 mg/kg, p.o.), 6-OHDA+EEMC (200 mg/kg, p.o.), 6-hydroxydopamine+ EESG (100 mg/kg, p.o.), 6-hydroxydopamine+ EESG (200 mg/kg, p.o.), and 6-hydroxydopamine+ MCSG-CE (100 mg/kg, p.o.) were the eight groups each containing six rats. Each animal was subjected to its treatment for seven days following the induction. The MCSG-receiving groups' catalepsy scores notably dropped in contrast to the pre-treatment group. This implies that dopaminergic neurotransmission in the striatum, which lessens muscular rigidity and restores voluntary movements, is positively impacted by MCSG [80].

Nigella sativa*, *Prunus dulcis*, *Piper longum*, *Cucurbita pepo*, and *Piper nigrum

Kishore et al. 2022 evaluated haloperidol (1 mg/kg i.p.) and reserpine (1 mg/kg i.p.) induced PD in healthy male Swiss albino rats. PHE (Poly herbal extract) of *Piper nigrum*, *Nigella sativa*, *Cucurbita pepo*, *Prunus dulcis*, *Piper longum*, and *Cucurbita pepo* was given at doses of 100, 200, as well as 400 mg/kg. Animals were divided into six groups

(Normal, Disease, Standard, and PHE at 100, 200, and 400 mg/kg; six animals per group). Behavioural, along with locomotor assessments, showed that PHE significantly restored activity impaired by haloperidol and reserpine on a dose-related basis, at 400 mg/kg, yielding the best results [81].

Tongtian oral liquid

Dongjie et al. 2022 evaluated eleven herbal ingredients comprising the poly-herbal formulation known as Tongtian oral liquid (TTKFY) in the zebrafish treated with MPTP. The study assessed TTKFY's neuroprotective properties on the growth of DA-neurons, antioxidant properties and DA-pathway-related gene expression. Following treatment with MPTP drug (70 μ M) to cause PD, the larvae of Zebrafish were subjected to varying TTKFY concentrations (0.5, 1, 2, and 4 ml/L). TTKFY shielded DA-neurons, enhanced antioxidant function, behavioural problems, dopamine pathway and mRNA gene expression in a dose-related way. TTKFY treatment at four distinct dosages in MPTP-treated zebrafish embryos resulted in a notable upregulation of TH (Tyrosine hydroxylase) mRNA expression, thereby averting the neurotoxin's harmful effects on the embryo's DA-system [82].

Itrifal Muqawwi-e-Dimagh

Siddique et al. 2021 estimated Itrifal Muqawwi-e-Dimagh (IMD), a Unani polyherbal preparation, for its effects on transgenic *Drosophila melanogaster* neurons that express human α -synuclein. IMD is a polyherbal mixture that contains the following:

Emblica officinalis, *Terminalia bellirica*, *Terminalia chebula*, *Papaver somniferum*, *Malva sylvestris*, *Rosa damascene*, *Coriandrum sativum*, *Amygdalus communis*, cane sugar, silver, and clarified butter. IMD is recommended by the Unani medical system to cure mental illness and increase mental fortitude. The recommended dosage for humans was converted into equivalents for 20g of fly food. The PD flies were permitted to consume it for an entire day before the studies. The PD flies received L-Dopa of concentration of 10^{-3} M on an individual basis. In comparison to PD flies that were not subjected to IMD, those who were treated for it showed much-reduced levels of oxidative strain and increased levels of enzymes that act as antioxidants. Additionally, tyrosine hydroxylase activity was elevated which was dose-dependent. IMD either reduces oxidative damage in the brains of PD flies through neutralizing ROS and Preventing dopaminergic neuron damage, or it prevents Lewy bodies from developing by preventing the fibrils from aggregating [83].

***Prunus amygdalus* (PA), *Arachis hypogaea* (AH), *Citrullus lanatus* (CL)**

Nandagopal et al. 2020 evaluated the effects of a polyherbal mixture on PD in a rat model induced by CPZ (3 mg/kg i.p.). Rats received treatment of mixture of methanolic extract of *Prunus amygdalus*, *Arachis hypogaea*, and *Citrullus lanatus* (MEPAC) and a standard drug for 21 days and divided into five groups (Normal, Disease, Standard, MEPAC 200

mg/kg, and 400 mg/kg; six rats per group). MEPAC treatment significantly elevated dopamine, GSH, and SOD levels while reducing MDA levels. Histopathological analysis indicated that MEPAC-treated rats had a nearly normal cerebral cortex and hippocampus, similar to the standard drug group, with mild proliferation in the hippocampal region [84].

Terminalia chebula and Rosa damascena

Kumar et al. 2020 examined the antiparkinsonian properties of a polyherbal suspension containing *Terminalia chebula* and *Rosa damascena* in albino rats. Thirty animals were categorized into five groups of six: Normal, Disease (haloperidol 2 mg/kg i.p. for 11 days), Standard (levodopa 6 mg/kg p.o. for 45 days), and two Treatment groups receiving haloperidol (2 milligram/kilogram i.p. for eleven days) alongside polyherbal suspension at 100 mg/kg and 200 mg/kg per oral for 45 days. Both doses of the polyherbal treatment demonstrated neuroprotective effects, reducing oxidative stress without side effects [85].

Camellia sinensis and Withania somnifera

Giri M et al. 2020 evaluated the potential of hydroalcoholic extracts of *Camellia sinensis* (HECS), *Withania somnifera* (HEWS), and a 1:1 combination mixture to stop neuronal damage from reserpine, tacrine, and haloperidol. Intraperitoneal injections of reserpine (1 mg/kg) and tacrine (5 mg/kg) were administered to Wistar rats, whereas haloperidol (0.5 mg/kg) was administered to albino

mice. HECS, HEWS, and combination were given to different groups 30 minutes prior to the administration of tacrine, reserpine, and haloperidol at different concentrations of 100 mg/kg and 30 mg/kg (p.o.). The 1:1 combination exhibits antioxidant action as well as protection against neuronal injury, where 30mg/kg exhibited more observable effects against reserpine-caused hyperlocomotion, tacrine-caused vacuous chewing movements, and orofacial burst, and haloperidol-induced catalepsy [86].

Hepad S1

Kim et al. 2019 assessed PD models *in vivo* and *in vitro*. The study looked into the neuroprotective properties of the herbal supplement Hepad S1, a remedy for various disease. The plants *Cnidii Rhizoma*, *Atractylodis Rhizoma*, *Paeonia Japonica*, *Glycyrrhizae Radix et Rhizoma*, *Poria cocos Wolf* and *Zizyphi Semenare* are combined to make Hepad S1. The male Sprague-Dawley rats were given MPTP to induce PD. Hepad S1 at dose of 200, 300, 400, and 500 mg/kg/day administered orally for 4 weeks inhibited the MPP⁺ ability to reduce GSH and increase lipid peroxidation within cells, demonstrating anti-oxidant action. Animals treated with Hepad S1 had higher Orexin A levels in the serum and serotonin. Hepad S1 also improved dopamine levels and complex I enzyme activity in SN [87].

Gami-Chunggan

Ahn et al. 2019 assessed Gami-Chunggan Formula's

(GCF) benefits of neuroprotection in chronic PD models in animals. *A. gigas* root, *G. jasminoides* Ellis fruit, *P. lactiflora* root, *L. chuanxiong* root, *S. aromaticum* bud, *P. suffruticosa* andrews root bark, *B. falcatum* Linne root, and *A. rugosa* O. Kuntze were the most prevalent plants in GCF. For five weeks, MPTP and probenecid were administered to C57BL/6 mice. For 38 days, GCF (300 mg/kg, 100 mg/kg, and 200 mg/kg) was given concurrently alongside MPTP injection. GCF was also given to the animals with overexpressed A53T α -synuclein for 60 days. GCF reduced motor impairment in mice with A53T α -synuclein overexpression and those induced by MPTP. Additionally, GCF prevented the depletion of SN neurons and dopaminergic fibers within the striatum [88].

***Bacopa monnieri* (BM), *Mucuna Pruriens* (MP),
Embelica Officinalis (EO) and *Withania somnifera* (WS)**

Srivastava et al. 2019 evaluated polyherbal formulations (PHFs 1–5) that were made using extracts of BM, EO, MP, and WS in ratios of 1:1:1:1, 1:2:2:2, 2:1:2:2, 2:2:1:2, and 2:2:2:1. These PHFs were refined to enhance their antioxidant capabilities by employing the DPPH assay and PHF1 showed higher activity and was selected for treatment. Mice were categorized into control, MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) group, and MPTP+PHF1 groups, with PHF1 administered intraperitoneally at 50 mg/kg body weight. MPTP treatment (20 mg/kg

orally) was given over two weeks, with PHF1 pre-treatment. Results showed that PHF1 significantly improved dopaminergic neurons, reduced apoptosis, enhanced antioxidant activity, and reestablished dopamine levels in the brains of mice with PD induced by MPTP in comparison with the group that received only MPTP [89].

DA-9805

Eo et al. 2019 and Jeong et al. 2018 assessed DA-9805, a standardized polyherbal extract comprising *Angelica Dahuricae Radix*, *Moutan Cortex Radix*, and *Bupleuri Radix*, demonstrated neuroprotective effects against 6-Hydroxydopamine-caused cytotoxicity both *in vivo* and *in vitro*. Through the ERK-Nrf2 pathway, it increased PC12 cell survival, inhibited apoptosis, and triggered antioxidative enzymes. In 6-OHDA-treated animals, DA-9805 maintained locomotion, dopamine transmission, and dopaminergic neurons. In SH-SY5Y cells treated with MPP⁺, it decreased ROS, maintained mitochondrial activity, and restored tyrosine hydroxylase expression. DA-9805 alleviated bradykinesia, preserved striatal and SNpc neurons, increased dopamine levels, and controlled mitochondrial genes and AKT phosphorylation in the insulin pathway in MPTP-induced PD animals [90,91]. **Huh et al. 2022** also assessed DA-9805, which improved neurotransmitter imbalances and a motor impairment in 6-OHDA-induced PD animals. In the ipsilateral striatum and SNpc, it restored the expression of choline acetyltransferase, dopamine

transporter, and tyrosine hydroxylase, suggesting neuroprotection [92]

BR-16A (Mentat®)

Kumar et al. 2006 assessed BR-16A, an herbal psychotropic blend containing *Bacopa monnieri*, *Acorus calamus*, *Tinospora cordifolia*, *Centella asiatica*, *Withania somnifera*, *Embelica officinalis*, *Saussurea lappa*, *Evolvulus alsinoides*, and *Triphala* (*Terminalia belerica*, *Terminalia arjuna*, *Terminalia arjuna*) at dosages of 50 and 100 mg/kg (oral) for its neuroprotection in haloperidol (1 mg/kg i.p.) and reserpine (2 mg/kg i.p.) induced catalepsy in mice. The individual *Withania somnifera* and BR-16A at doses 50 and 100mg/kg showed significant protection against catalepsy, indicating they may

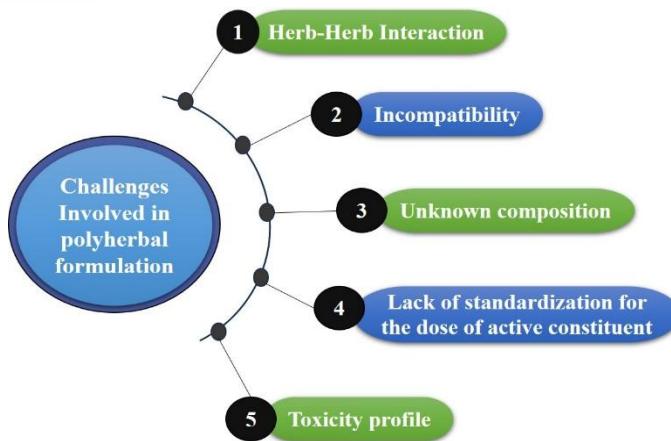
influence both dopaminergic and serotonergic receptor-mediated neurotransmission [93].

NR-ANX-C

Nair V et al. 2007 assessed NR-ANX-C, a PHF containing *Ocimum sanctum*, *Withania somnifera*, *Camellia sinensis*, Shilajit and *Triphala* for anticonvulsant efficacy. Catalepsy was induced by intraperitoneal administration of haloperidol (1mg/kg). The duration of the animal's-imposed posture was used to calculate its catalepsy score. All NR-ANX-C treated groups showed a significant decrease in cataleptic scores and SOD activity, with the NR-ANX-C (25 mg/kg) treated group experiencing the greatest reduction [94].

Table 2: Phase-wise Clinical Insights of Polyherbal Formulations in Parkinson's Disease Treatment

Formulation	Study Type	Trial Phase	Clinical Trial Id	Study start date	Status
Herbal Medicinal Mixture (Roucongrong, Heshouwu)	Interventional	Phase 2 Phase 3	NCT00656253	2008	Completed
Huanglian Wendan, Liu Wei Di Huang, Jin Gui Shen Qi, Bu Yang Huan Wu, Tian Ma Gou Teng	Interventional	Phase2 Phase 3	NCT05001217	2022	Completed


Composed of Interventional Roucongrong and adjuvant	Phase2 Phase 3	NCT00629161	2008	Unknown Status
<i>Astragalus membranaceous</i> (Fisch.), Bunge, <i>Rehmannia glutinosa</i> libosch	Interventional	Phase 2	NCT02616120	2015 Recruiting

Challenges associated with the polyherbal formulation

As long as herbal remedies are proven safe for treating minor ailments, most countries approve them based on traditional references. Nonetheless, there are growing suggestions that polyherbal therapy could help with more severe conditions for which there are no conventional treatments. This emphasizes how regulatory frameworks, backed by scientific and clinical data, are necessary to guarantee their safety, effectiveness, and quality. Inadequate regulation, uncontrolled distribution, misuse, and subpar product quality are frequently the causes of adverse consequences in polyherbal therapy. Furthermore, there are serious worries regarding herb-drug interactions, especially for people taking several drugs from several doctors who might not coordinate their care [95]. The primary obstacle in employing PHFs for preventive or therapeutic purposes is a lack of scientific information regarding their metabolite profiles,

human-equivalent dosages, unknown side effects, and potential counteragents [96]. **Figure 6** illustrates various problems associated with polyherbal formulation.

Plant combinations can produce intricate and often unexpected interactions. While enhancing therapeutic outcomes is typically the aim of these combinations, more research on herb-herb interactions is still required, and it isn't easy to forecast the effects of the numerous active ingredients in herbal preparations [97]. Because diverse medicinal plants contain a wide variety of chemical components, creating a stable polyherbal mixture is a difficult undertaking. Therefore, whether or not ingredients with specific therapeutic activity are identified, the complete herbal medication or herbal drug preparation is considered an active drug material. The chemical composition, solubility, absorption, and therapeutic response of these medications are all altered as a result of the incompatibility [98].

Figure 6: Various Challenges in Polyherbal Formulation

The fact that many plant-based products may interact with drugs or foods, but that data is frequently unavailable, makes quality control and drug-herb interactions serious disadvantages [99]. It is difficult to guarantee the safety and non-toxicity of polyherbal compositions since interactions between different herbs can have unanticipated consequences. To minimize potential risks, thorough toxicity testing and safety assessments are necessary [100]. Extensive safety evaluations and toxicity testing are required to reduce possible hazards [100]. It is quite challenging to standardize herbal treatments because of their inherent polypharmacy. Establishing robust quality control protocols is essential. Each herb's active ingredient must be properly identified and measured using advanced analytical techniques like HPLC [101]. The pharmaceutical industry works to develop internal standards based on the quantification of marker compounds. The task of integrating qualitative

fingerprinting with other physicochemical quality measures is still ongoing, but these issues should soon be resolved [102].

Scope and Future Perspectives

PHFs hold considerable potential in addressing the complex, multifactorial pathology of PD. Through their modulation of oxidative stress, neuroinflammation, mitochondrial dysfunction, and α -synuclein aggregation, they provide multitarget effects and provide a comprehensive treatment approach. Both motor and non-motor symptoms may be relieved by PHFs and traditional herbal medicines, according to recent studies (2022–2025), especially when combined with conventional pharmaceutical drugs. The bioavailability, blood–brain barrier penetration, and sustained release of phytoconstituents have been greatly improved by advances in nanotechnology, such as liposomes, solid lipid nanoparticles, and dendrimers; green nanotechnology offers safer and more environmentally friendly substitutes. Despite these developments, clinical translation is still hampered by issues like contamination, inconsistent herbal composition, a lack of standards, and a lack of long-term safety evidence. In order to corroborate preclinical findings and develop consistent dose regimens, future initiatives should focus on large-scale, randomized clinical trials. Furthermore, combining network pharmacology, omics technology, and mechanistic research on herb-drug interactions could help elucidate the molecular

underpinnings of synergism. PHFs and cutting-edge medication delivery systems may eventually be able to supplement current therapies and develop into evidence-based, individualized approaches to the management of Parkinson's disease.

Conclusion

In the field of neurodegenerative illnesses, PD remains a major obstacle as existing treatments mainly target symptom relief instead of stopping or reversing the disease's progression. Polyherbal formulations offer a promising alternative for holistic care, leveraging the combined effects of various bioactive compounds to provide neuroprotective benefits, counter oxidative stress, and modulate neuroinflammatory reactions. The synergistic interactions among these herbal ingredients have the potential to improve both motor and non-motor functions while minimizing the side effects often associated with conventional treatments. Emerging evidence supports the effectiveness of polyherbal combinations in enhancing motor function, mitigating non-motor symptoms, and enhancing everyone's standard of living for those affected by PD. Future research should prioritize well-structured clinical trials and thorough mechanistic studies to realize their therapeutic capabilities fully. Such initiatives are crucial for establishing a robust body of evidence to integrate polyherbal therapies into standard treatment strategies for Parkinson's disease.

References:

1. Re F, Gregori M, Masserini M. Nanotechnology for neurodegenerative disorders. *Maturitas*. 2012 Sep 1;73(1):45-51.
2. Savitt JM, Dawson VL, Dawson TM. Diagnosis and treatment of Parkinson disease: molecules to medicine. *The Journal of clinical investigation*. 2006 Jul 3;116(7):1744-54.
3. Dovonou A, Bolduc C, Soto Linan V, Gora C, Peralta Iii MR, Lévesque M. Animal models of Parkinson's disease: bridging the gap between disease hallmarks and research questions. *Translational neurodegeneration*. 2023 Jul 19;12(1):36.
4. Schapira AH, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease. *Nature reviews neuroscience*. 2017 Jul;18(7):435-50.
5. Davie CA. A review of Parkinson's disease. Vol. 86, *British Medical Bulletin*. 2008. p. 109–27.
6. Bertram L, Tanzi RE. The genetic epidemiology of neurodegenerative disease. *The Journal of clinical investigation*. 2005 Jun 1;115(6):1449-57.
7. Parkinson J. An essay on the shaking palsy. *The Journal of neuropsychiatry and clinical neurosciences*. 2002 May;14(2):223-36.
8. Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N, Culpepper WJ, Dorsey ER, Elbaz A, Ellenbogen RG, Fisher JL. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for

the Global Burden of Disease Study 2016. *The Lancet Neurology*. 2019 May 1;18(5):459-80.

9. World Health Organization. Launch of WHO's Parkinson disease technical brief. World Health Organization: Geneva, Switzerland. 2022.

10. Bhidayasiri R, Sringean J, Phumphid S, Anan C, Thanawattano C, Deoisres S, Panyakaew P, Phokaewvarangkul O, Maytharakcheep S, Buranasrikul V, Prasertpan T. The rise of Parkinson's disease is a global challenge, but efforts to tackle this must begin at a national level: a protocol for national digital screening and "eat, move, sleep" lifestyle interventions to prevent or slow the rise of non-communicable diseases in Thailand. *Frontiers in neurology*. 2024 May 13; 15:1386608.

11. Monge-Fuentes V, Biolchi Mayer A, Lima MR, Geraldes LR, Zanotto LN, Moreira KG, Martins OP, Piva HL, Felipe MS, Amaral AC, Bocca AL. Dopamine-loaded nanoparticle systems circumvent the blood-brain barrier restoring motor function in mouse model for Parkinson's Disease. *Scientific reports*. 2021 Jul 26;11(1):15185.

12. Casanova Y, Negro S, Slowing K, García-García L, Fernández-Carballido A, Rahmani M, Barcia E. Micro-and nano-systems developed for tolcapone in Parkinson's disease. *Pharmaceutics*. 2022 May 17;14(5):1080.

13. Bezard E. Experimental reappraisal of continuous dopaminergic stimulation against L-dopa-induced dyskinesia. *Movement Disorders*. 2013 Jul;28(8):1021-2.

14. Essa MM, Braidy N, Bridge W, Subash S, Manivasagam T, Vijayan RK, Al-Adawi S, Guillemin GJ. Review of natural products on Parkinson's disease pathology. *Journal of Aging Research and Lifestyle* 2014;3(1):1-8.

15. Jankovic J, Tan EK. Parkinson's disease: etiopathogenesis and treatment. *Journal of Neurology, Neurosurgery & Psychiatry*. 2020 Aug 1;91(8):795-808.

16. Pradeep S, Jain AS, Dharmashkara C, Prasad SK, Kollur SP, Syed A, Shivamallu C. Alzheimer's disease and herbal combination therapy: A comprehensive review. *Journal of Alzheimer's disease Reports*. 2020 Oct 24;4(1):417-29.

17. Rahman MM, Wang X, Islam MR, Akash S, Supti FA, Mitu MI, Harun-Or-Rashid M, Aktar MN, Khatun Kali MS, Jahan FI, Singla RK. Multifunctional role of natural products for the treatment of Parkinson's disease: at a glance. *Frontiers in Pharmacology*. 2022 Oct 6; 13:976385.

18. Parasuraman S, Thing GS, Dhanaraj SA. Polyherbal formulation: Concept of ayurveda. *Pharmacognosy reviews*. 2014 Jul;8(16):73.

19. Sharma P, Kishore A, De I, Negi S, Kumar G, Bhardwaj S, Singh M. Mitigating neuroinflammation in Parkinson's disease: exploring the role of proinflammatory cytokines

and the potential of phytochemicals as natural therapeutics. *Neurochemistry international*. 2023 Nov 1;170:105604.

20. Shokeen A, Dhawan B, Sarwat M, Gupta S. Advancement in herbal drugs for the treatment of Parkinson's disease. In *Targeting Angiogenesis, Inflammation, and Oxidative Stress in Chronic Diseases* 2024 Jan 1 (pp. 251-276). Academic Press.

21. Yin R, Xue J, Tan Y, Fang C, Hu C, Yang Q, Mei X, Qi D. The positive role and mechanism of herbal medicine in Parkinson's disease. *Oxidative medicine and cellular longevity*. 2021;2021(1):9923331.

22. Choi HS, Park MS, Kim SH, Hwang BY, Lee CK, Lee MK. Neuroprotective effects of herbal ethanol extracts from *Gynostemma pentaphyllum* in the 6-hydroxydopamine-lesioned rat model of Parkinson's disease. *Molecules*. 2010 Apr 16;15(4):2814-24.

23. Ojha RP, Rastogi M, Devi BP, Agrawal A, Dubey GP. Neuroprotective effect of curcuminoids against inflammation-mediated dopaminergic neurodegeneration in the MPTP model of Parkinson's disease. *Journal of Neuroimmune Pharmacology*. 2012 Sep;7(3):609-18.

24. Khatri D, Juvekar A. Combination of curcumin and ellagic acid mitigates rotenone induced locomotor, oxidative and mitochondrial deficits in mice. *Parkinsonism & Related Disorders*. 2018 Jan 1;46:e42.

25. Fathy SM, El-Dash HA, Said NI. Neuroprotective effects of pomegranate (*Punica granatum* L.) juice and seed extract in paraquat-induced mouse model of Parkinson's disease. *BMC Complementary Medicine and Therapies*. 2021 Apr 26;21(1):130.

26. Adebayo OG, Ben-Azu B, Akpofure E, Modo EU, Ndidiama IP, Enya JI, Udoeyop FA, Oritsemuelebi B, Chidebe EO, Chimezie J, Omeiza NA. *Zingiber officinale* Roscoe extract improves nigrostriatal dopaminergic activity in rotenone-induced Parkinsonian mice: Implication of COX-2/TNF- α /IL-6 and antioxidant enzyme crosstalk in the immunoinflammatory responses. *Phytomedicine Plus*. 2024 Nov 1;4(4):100610.

27. Singh B, Pandey S, Rumman M, Mahdi AA. Neuroprotective effects of *Bacopa monnieri* in Parkinson's disease model. *Metabolic brain disease*. 2020 Mar;35(3):517-25.

28. Dal Santo G, de Veras BO, Rico E, Dal Magro J, Agostini JF, Vieira LD, Calisto JF, Mocelin R, de Sá Fonseca V, Wanderley AG. Hexane extract from *Spondias mombin* L. (Anacardiaceae) prevents behavioral and oxidative status changes on model of Parkinson's disease in zebrafish. *Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology*. 2021 Mar 1;241:108953.

29. Gaur V, Bodhankar SL, Mohan V, Thakurdesai PA. Neurobehavioral assessment of hydroalcoholic extract of *Trigonella foenum-graecum* seeds in rodent models of Parkinson's disease. *Pharmaceutical Biology*. 2013 May 1;51(5):550-7.

30. Teerapattarakarn N, Benya-aphikul H, Tansawat R, Wanakhachornkrai O, Tantisira MH, Rodsiri R. Neuroprotective effect of a standardized extract of *Centella asiatica* ECa233 in rotenone-induced parkinsonism rats. *Phytomedicine*. 2018 May 15;44:65-73.

31. RajaSankar S, Manivasagam T, Sankar V, Prakash S, Muthusamy R, Krishnamurti A, Surendran S. *Withania somnifera* root extract improves catecholamines and physiological abnormalities seen in a Parkinson's disease model mouse. *Journal of Ethnopharmacology*. 2009 Sep 25;125(3):369-73.

32. Bigham M, Mohammadipour A, Hosseini M, Malvandi AM, Ebrahimzadeh-Bideskan A. Neuroprotective effects of garlic extract on dopaminergic neurons of substantia nigra in a rat model of Parkinson's disease: motor and non-motor outcomes. *Metabolic brain disease*. 2021 Jun;36(5):927-37.

33. Sayyaed A, Saraswat N, Kulkarni A, Vyawahare N. Neuroprotective action of *Smilax china* ethanolic bark extract in treatment of a prominent aging disorder: Parkinson's disease induced by rotenone. *Future Journal of Pharmaceutical Sciences*. 2023 Sep 14;9(1):79.

34. Vannur A, Biradar PR, Patil V. Experimental validation of *Vitex negundo* leaves hydroalcoholic extract for neuroprotection in haloperidol induced parkinson's disease in rat. *Metabolic Brain Disease*. 2022 Feb;37(2):411-26.

35. Little CV. Simply because it works better: Exploring motives for the use of medical herbalism in contemporary UK health care. *Complementary therapies in medicine*. 2009 Oct 1;17(5-6):300-8.

36. Joshi CS, Priya ES, Venkataraman S. Acute and subacute toxicity studies on the polyherbal antidiabetic formulation Diakyur in experimental animal models. *Journal of health science*. 2007;53(2):245-9.

37. Kotmire S, Desai A, Chougule N. The advances in polyherbal formulation. *Journal of Pharmacognosy and phytochemistry*. 2024;13(1):210-21.

38. Zhou X, Seto SW, Chang D, Kiat H, Razmovski-Naumovski V, Chan K, Bensoussan A. Synergistic effects of Chinese herbal medicine: a comprehensive review of methodology and current research. *Frontiers in pharmacology*. 2016 Jul 12;7:201.

39. Zhao B. Natural antioxidants protect neurons in Alzheimer's disease and Parkinson's disease. *Neurochemical research*. 2009 Apr;34(4):630-8.

40. Dorszewska J, Kowalska M, Prendecki M, Piekut T, Kozłowska J, Kozubski W. Oxidative stress factors in Parkinson's disease. *Neural regeneration research.* 2021 Jul;16(7):1383-1391.

41. Percário S, da Silva Barbosa A, Varela EL, Gomes AR, Ferreira ME, de Nazaré Araújo Moreira T, Dolabela MF. Oxidative stress in Parkinson's disease: Potential benefits of antioxidant supplementation. *Oxidative medicine and cellular longevity.* 2020 (1):2360872.

42. Sutachan JJ, Casas Z, Albarracin SL, Stab BR, Samudio I, Gonzalez J, Morales L, Barreto GE. Cellular and molecular mechanisms of antioxidants in Parkinson's disease. *Nutritional neuroscience.* 2012 May 1;15(3):120-6.

43. Abrahams S, Haylett WL, Johnson G, Carr JA, Bardien S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: A review. *Neuroscience.* 2019 May 15;406:1-21.

44. Suk K, Lee H, Kang SS, Cho GJ, Choi WS. Flavonoid baicalein attenuates activation-induced cell death of brain microglia. *The Journal of pharmacology and experimental therapeutics.* 2003 May 1;305(2):638-45.

45. Ay M, Luo J, Langley M, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson's Disease. *Journal of neurochemistry.* 2017 Jun;141(5):766-82.

46. Menegas S, Ferreira CL, Cararo JH, Gava FF, Dal-Pont GC, Gomes ML, Agostini JF, Schuck PF, Scaini G, Andersen ML, Quevedo J. Resveratrol protects the brain against oxidative damage in a dopaminergic animal model of mania. *Metabolic Brain Disease.* 2019 Jun 15;34(3):941-50.

47. Al-Brakati A, Albarakati AJ, Lokman MS, Theyab A, Algahtani M, Menshawi S, AlAmri OD, Al Omairi NE, Essawy EA, Kassab RB, Abdel Moneim AE. Possible role of kaempferol in reversing oxidative damage, inflammation, and apoptosis-mediated cortical injury following cadmium exposure. *Neurotoxicity research.* 2021 Apr;39(2):198-209.

48. Vijayakumar S, Prabhu S, Rajalakhsni S, Manogar P. Review on potential phytocompounds in drug development for Parkinson disease: a pharmacoinformatic approach. *Informatics in Medicine Unlocked.* 2016 Jan 1;5:15-25.

49. Krishnamoorthy A, Sevanan M, Mani S, Balu M, Balaji S. Chrysin restores MPTP induced neuroinflammation, oxidative stress and neurotrophic factors in an acute Parkinson's disease mouse model. *Neuroscience letters.* 2019 Sep 14;709:134382.

50. Zhang Z, Li G, Szeto SS, Chong CM, Quan Q, Huang C, Cui W, Guo B, Wang Y, Han Y, Siu KM. Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. *Free Radical Biology and Medicine*. 2015 Jul 1;84:331-43.

51. Dhanalakshmi C, Manivasagam T, Nataraj J, Justin Thenmozhi A, Essa MM. Neurosupportive Role of Vanillin, a Natural Phenolic Compound, on Rotenone Induced Neurotoxicity in SH-SY5Y Neuroblastoma Cells. *Evidence-Based Complementary and Alternative Medicine*. 2015;2015(1):626028.

52. Kim IS, Choi DK, Jung HJ. Neuroprotective effects of vanillyl alcohol in *Gastrodia elata* Blume through suppression of oxidative stress and anti-apoptotic activity in toxin-induced dopaminergic MN9D cells. *Molecules*. 2011 Jun 24;16(7):5349-61.

53. Makni M, Chtourou Y, Barkallah M, Fetoui H. Protective effect of vanillin against carbon tetrachloride (CCl₄)-induced oxidative brain injury in rats. *Toxicology and industrial health*. 2012 Aug;28(7):655-62.

54. Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR. Oxidative stress and Parkinson's disease. *Frontiers in neuroanatomy*. 2015 Jul 8;9:91.

55. Huang B, Hu G, Zong X, Yang S, He D, Gao X, Liu D. α -Cyperone protects dopaminergic neurons and inhibits neuroinflammation in LPS-induced Parkinson's disease rat model via activating Nrf2/HO-1 and suppressing NF- κ B signaling pathway. *International Immunopharmacology*. 2023 Feb 1;115:109698.

56. Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T. Interleukin (IL)-1 β , IL-2, IL-4, IL-6 and transforming growth factor- α levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease. *Neuroscience letters*. 1996 Jun 14;211(1):13-6.

57. Subedi L, Lee SE, Madiha S, Gaire BP, Jin M, Yumnam S, Kim SY. Phytochemicals against TNF α -mediated neuroinflammatory diseases. *International journal of molecular sciences*. 2020 Jan 24;21(3):764.

58. Park G, Kim HG, Ju MS, Ha SK, Park Y, Kim SY, Oh MS. 6-Shogaol, an active compound of ginger, protects dopaminergic neurons in Parkinson's disease models via anti-neuroinflammation. *Acta Pharmacologica Sinica*. 2013 Sep;34(9):1131-9.

59. Subedi L, Gaire BP, Do MH, Lee TH, Kim SY. Anti-neuroinflammatory and neuroprotective effects of the *Lindera neesiana* fruit in vitro. *Phytomedicine*. 2016 Jul 15;23(8):872-81.

60. Jin X, Liu MY, Zhang DF, Zhong X, Du K, Qian P, Yao WF, Gao H, Wei MJ. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via

suppressing NLRP 3 inflammasomes and TLR 4/NF- κ B signaling pathway. *CNS Neuroscience & Therapeutics*. 2019 May;25(5):575-90.

61. Subedi L, Cho K, Park YU, Choi HJ, Kim SY. Sulforaphane-enriched broccoli sprouts pretreated by pulsed electric fields reduces neuroinflammation and ameliorates scopolamine-induced amnesia in mouse brain through its antioxidant ability via Nrf2-HO-1 activation. *Oxidative medicine and cellular longevity*. 2019;2019(1):3549274.

62. Zhou Y, Wang G, Li D, Wang Y, Wu Q, Shi J, Zhang F. Dual modulation on glial cells by tetrahydroxystilbene glucoside protects against dopamine neuronal loss. *Journal of neuroinflammation*. 2018 May 25;15(1):161.

63. Aggarwal BB, Gupta SC, Sung B. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. *British journal of pharmacology*. 2013 Aug;169(8):1672-92.

64. Ho CY, Weng CJ, Jhang JJ, Cheng YT, Huang SM, Yen GC. Diallyl sulfide as a potential dietary agent to reduce TNF- α -and histamine-induced proinflammatory responses in A7r5 cells. *Molecular nutrition & food research*. 2014 May;58(5):1069-78.

65. Li X, Zhang Y, Wang Y, Xu J, Xin P, Meng Y, Wang Q, Kuang H. The mechanisms of traditional Chinese medicine underlying the prevention and treatment of Parkinson's disease. *Frontiers in pharmacology*. 2017 Sep 19;8:634.

66. Liu Y, Wang S, Kan J, Zhang J, Zhou L, Huang Y, Zhang Y. Chinese herbal medicine interventions in neurological disorder therapeutics by regulating glutamate signaling. *Current neuropharmacology*. 2020 Apr 1;18(4):260-76.

67. Sgambato-Faure V, Cenci MA. Glutamatergic mechanisms in the dyskinesias induced by pharmacological dopamine replacement and deep brain stimulation for the treatment of Parkinson's disease. *Progress in neurobiology*. 2012 Jan 1;96(1):69-86.

68. Barone P. Neurotransmission in Parkinson's disease: beyond dopamine. *European journal of neurology*. 2010 Mar;17(3):364-76.

69. Alharbi B, Al-Kuraishi HM, Al-Gareeb AI, Elekhnawy E, Alharbi H, Alexiou A, Papadakis M, Batiha GE. Role of GABA pathway in motor and non-motor symptoms in Parkinson's disease: a bidirectional circuit. *European Journal of Medical Research*. 2024 Mar 27;29(1):205.

70. Rebas E, Rzajew J, Radzik T, Zylinska L. Neuroprotective polyphenols: a modulatory action on neurotransmitter pathways. *Current neuropharmacology*. 2020 May 1;18(5):431-45.

71. Radad K, Gille G, Moldzio R, Saito H, Rausch WD. Ginsenosides Rb1 and Rg1 effects on mesencephalic dopaminergic cells stressed with glutamate. *Brain research*. 2004 Sep 17;1021(1):41-53.

72. Zhang YL, Liu Y, Kang XP, Dou CY, Zhuo RG, Huang SQ, Peng L, Wen L. Ginsenoside Rb1 confers neuroprotection via promotion of glutamate transporters in a mouse model of Parkinson's disease. *Neuropharmacology*. 2018 Mar 15;131:223-37.

73. Kang KS, Yamabe N, Wen Y, Fukui M, Zhu BT. Beneficial effects of natural phenolics on levodopa methylation and oxidative neurodegeneration. *Brain research*. 2013 Feb 25;1497:1-4.

74. Kang KS, Wen Y, Yamabe N, Fukui M, Bishop SC, Zhu BT. Dual beneficial effects of (-)-epigallocatechin-3-gallate on levodopa methylation and hippocampal neurodegeneration: in vitro and in vivo studies. *PLoS one*. 2010 Aug 5;5(8):e11951.

75. Javed H, Nagoor Meeran MF, Azimullah S, Adem A, Sadek B, Ojha SK. Plant extracts and phytochemicals targeting α -synuclein aggregation in Parkinson's disease models. *Frontiers in Pharmacology*. 2019 Mar 19;9:1555.

76. Sharma N, Nehru B. Curcumin affords neuroprotection and inhibits α -synuclein aggregation in lipopolysaccharide-induced Parkinson's disease model. *Inflammopharmacology*. 2018 Apr;26(2):349-60.

77. Wu JZ, Ardah M, Haikal C, Svanbergsson A, Diepenbroek M, Vaikath NN, Li W, Wang ZY, Outeiro TF, El-Agnaf OM, Li JY. Dihydromyricetin and Salvianolic acid B inhibit alpha-synuclein aggregation and enhance chaperone-mediated autophagy. *Translational neurodegeneration*. 2019 Jun 15;8(1):18.

78. Liu Y, Carver JA, Calabrese AN, Pukala TL. Gallic acid interacts with α -synuclein to prevent the structural collapse necessary for its aggregation. *Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics*. 2014 Sep 1;1844(9):1481-5.

79. Ardah MT, Paleologou KE, Lv G, Menon SA, Khair SB, Lu JH, Safieh-Garabedian B, Al-Hayani AA, Eliezer D, Li M, El-Agnaf OM. Ginsenoside Rb1 inhibits fibrillation and toxicity of alpha-synuclein and disaggregates preformed fibrils. *Neurobiology of disease*. 2015 Feb 1;74:89-101.

80. Manjusha V, Suresh D, Venkatachalam V. Antiparkinsonian activity of moringa concanensis and sesbania grandiflora in 6-hydroxy dopamine induced parkinsonism in rats. *JMPAS*. 2022 Jan;11(1):4324-7.

81. Kishore DV, Siddiqui FM, Khasim SM, Baburao s. evaluation of anti-parkinson's activity of a polyherbal mixture in experimental mice.

82. Dongjie S, Rajendran RS, Xia Q, She G, Tu P, Zhang Y, Liu K. Neuroprotective effects of Tongtian oral liquid, a Traditional Chinese Medicine in the Parkinson's disease-induced zebrafish model. *Biomedicine & Pharmacotherapy*. 2022 Apr 1;148:112706.

83. Siddique YH, Naz F, Rashid M, Mian S. Effect of Itrifal Muqawwi-e-Dimagh (a polyherbal drug) on the transgenic Drosophila model of Parkinson's Disease. *Phytomedicine Plus*. 2021 Nov 1;1(4):100131.

84. Nandagopal A, Ali Khan MA. Neuroprotective effect of polyherbal formulation in'Parkinson's animal model. *Asian J Pharm Clin Res*. 2020;13(3):121-5.

85. Kumar A, Mishra K. PHARMACOLOGICAL EVALUATION OF POLYHERBAL SUSPENSION FOR ANTIPARKINSONS ACTIVITY IN ALBINO RAT. *International Journal of Pharmaceutical Sciences and Research*. 2020;11(8):3848.

86. Giri MA, Bhalke RD, Prakash KV, Kasture SB. Evaluation of *Camellia sinensis*, *Withania somnifera* and their Combination for Antioxidant and Antiparkinsonian Effect. *Journal of Pharmaceutical Sciences and Research*. 2020 Aug 1;12(8):1093-9.

87. Kim DH, Choi JJ, Park BJ. Herbal medicine (Hepad) prevents dopaminergic neuronal death in the rat MPTP model of Parkinson's disease. *Integrative Medicine Research*. 2019 Sep 1;8(3):202-8.

88. Ahn S, Liu QF, Jang JH, Park J, Jeong HJ, Kim Y, Kim DH, Jeong G, Oh ST, Park SU, Cho SY. Gami-Chunggan formula prevents motor dysfunction in MPTP/p-induced and A53T α -synuclein overexpressed Parkinson's disease mouse model though DJ-1 and BDNF expression. *Frontiers in Aging Neuroscience*. 2019 Aug 28;11:230.

89. Srivastava AK, Naseer A, Gupta A. Evaluation of Neurobehavioral and Biochemical Parameters of Poly-Herbal Formulation on MPTP-Intoxicated Mice for the Treatment of PD. *Current Bioactive Compounds*. 2020 Dec 1;16(9):1290-8.

90. Eo H, Kwon Y, Huh E, Sim Y, Choi JG, Jeong JS, Du XF, Soh HY, Hong SP, Pak YK, Oh MS. Protective effects of DA-9805 on dopaminergic neurons against 6-hydroxydopamine-induced neurotoxicity in the models of Parkinson's disease. *Biomedicine & Pharmacotherapy*. 2019 Sep 1;117:109184.

91. Jeong JS, Piao Y, Kang S, Son M, Kang YC, Du XF, Ryu J, Cho YW, Jiang HH, Oh MS, Hong SP. Triple herbal extract DA-9805 exerts a neuroprotective effect via amelioration of mitochondrial damage in experimental models of Parkinson's disease. *Scientific reports*. 2018 Oct 29;8(1):15953.

92. Huh E, Kwon Y, Choi JG, Lim MG, Jeong JS, Park AY, Kim JH, Pak YK, Hong SP, Oh MS. DA-9805, a herbal mixture, restores motor manifestations in 6-Hydroxydopamine-induced Parkinson's disease mouse model by regulating striatal dopamine and acetylcholine levels. *Frontiers in Pharmacology*. 2022 Jun 15;13:903664.

93. Kumar A, Kulkarni SK. Effect of BR-16A (Mentat), a polyherbal formulation on drug-induced catalepsy in mice. *Indian J Exp Biol*. 2006 Jan 1;44(1):45-8.

94. Nair V, Arjuman A, Dorababu P, Gopalakrishna HN, Rao UC, Mohan L. Effect of NR-ANX-C (a polyherbal formulation) on haloperidol induced catalepsy in albino mice. *Indian Journal of Medical Research*. 2007 Nov 1;126(5):480-4.

95. Gupta D, Sudan P, Imran M, Wal A. The Importance of Pharmacovigilance in the Polyherbal Sector: Challenges and Future Potential.

96. Nachimuthu S, Kandasamy R, Ponnusamy R, Dhanasekaran M, Thilagar S. Neurotoxicity of polyherbal formulations: challenges and potential solutions. In *Medicinal Herbs and Fungi: Neurotoxicity vs. Neuroprotection* 2021 Jan 22 (pp. 187-201). Singapore: Springer Singapore.

97. Che CT, Wang ZJ, Chow MS, Lam CW. Herb-herb combination for therapeutic enhancement and advancement: theory, practice and future perspectives. *Molecules*. 2013 May 3;18(5):5125-41.

98. Bhope SG, Nagore DH, Kuber VV, Gupta PK, Patil MJ. Design and development of a stable polyherbal formulation based on the results of compatibility studies. *Pharmacognosy research*. 2011 Apr;3(2):122.

99. Sen S, Chakraborty R. Toward the integration and advancement of herbal medicine: a focus on traditional Indian medicine. *Botanics: Targets and Therapy*. 2015 Feb 13:33-44.

100. Kanoujia D, Lata C. Exploring the potential of medicinal plants and herbal combinations for supplementation of vitamin D deficiency: a critical review. *International Journal of Advances in Engineering Sciences and Applied Mathematics*. 2025 Aug 26:1-8.

101. Naveen P, Lingaraju HB, Prasad KS. Rapid development and validation of improved reversed-phase high-performance liquid chromatography method for the quantification of mangiferin, a polyphenol xanthone glycoside in *Mangifera indica*. *Pharmacognosy Research*. 2017 Apr;9(2):215.

102. Wani MS, Parakh SR, Dehghan MH, Polshettiwar S, Chopade V, Chepurwar S. Herbal medicine and its standardization. *Pharmaceutical Reviews*. 2007;5(6):411038-49

How to cite this article:

Sahana E, Harshith JC, Bharathi DR, Chandan K, Ahmed SS. Polyherbal interventions in Parkinson's disease: Mechanistic and neuroprotective benefits. *J Adv Pharm Drug Dev.* 2025;1(1):1-26. doi:10.64842/46bz2826