

Personalized Medicine: Revolutionizing Treatment Approaches For Individualized Patient Care

Harshitha K S, Gowtham Kumar D K, Keerthana G R, Harshitha M R, Harish Gowda S M, Suhas N S*

Department of Pharmaceutics, Faculty of Pharmacy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B G Nagar, Karnataka, 571448

***Corresponding author:**

Mr. Suhas N S,
Department of Pharmaceutics,
Sri Adichunchanagiri College of
Pharmacy, Adichunchanagiri
University, B. G. Nagar,
Karnataka, India.

Email id:

suhaskoushik@accp.co.in

Received on: 24 July 2025

Revised on: 14 August 2025

Accepted on: 30 September 2025

DOI:

<https://doi.org/10.64842/snz3xb84>

Scan QR to visit JAPDD

Introduction

Personalized medicine is the process of identifying a patient's unique characteristics like genomic, biochemical, behavioral, etc., which may provide insight into how they will react to an intervention and then they can be treated. The term "individualized medicine" is also known as "Personalized medicine"

Abstract

Traditional medical protocols have relied on standardized approaches that often overlook individual variability in disease presentation and drug response, resulting in suboptimal outcomes and adverse effects. The advent of personalized medicine, driven by advances in genomic sequencing, molecular profiling, and biomarker analysis, enables the design of individualized treatment plans based on each patient's unique genetic and molecular characteristics. Genetically modified organisms and recombinant technologies now support the development of targeted drug therapies and biologics, allowing precise intervention at the molecular level. Further, the integration of digital health technologies and advanced analytics including wearable devices, remote monitoring, and machine-learning platforms has elevated diagnostics and disease management through continuous data collection and real-time adaptation. Global market trends indicate substantial investment in precision medicine as healthcare systems prioritize genomics-based diagnostics, biomarker-driven therapies, and data-centric models of care. As a result, the convergence of genomic science, biotechnology, and digital health is ushering in a new era of highly effective, patient-centric medicine characterized by predictive diagnostics, preventative strategies, and tailored treatments, ultimately transforming the landscape of healthcare and improving patient outcomes worldwide.

Keywords: Personalized medicine, genomic sequencing, targeted therapy, molecular diagnostics, digital health, market trends

[1]. Because, it makes use of the technology to meticulously compile and assess a patient's individual medical information for that patient alone [2]. It is relatively a new field of medicine where specific therapeutic techniques are prescribed for an individual. This approach has been developed based on

pharmacogenetic and pharmacogenomics data and information [3].

The phrase "personalized medicine" was first used in published works in 1999, while the fundamental ideas behind the area were established in the early 1960s [4]. The increasing trend of giving patients customized care gave rise to personalized medicine [5].

The goal of personalized medicine is to minimize drug toxicity and maximize therapy efficacy for each patient and it exemplifies appropriate patient selection, the best medication and dosage, and timely administration [6].

Early studies in personalized medicine focused on genetic differences that predict response to treatment, and this led to the expansion of clinical practice guidelines informed by the genome.[7] Personalized treatments have been connected to instances of genetically-mediated medication pharmacokinetics. This was partly caused by the scientific community in the biomedical sciences' understanding of the role of drug-metabolizing enzymes in the body's response to drugs [1]. According to the FDA, by concentrating more intently on prevention and treatment, PM seeks to enhance patient outcomes and reduce hazards. PM attempts to classify people according to how differently they respond to various therapeutic agents for their specific ailments, as opposed to developing novel drugs for patients. For example, Herceptin is a highly beneficial drug for approximately 20–30% of breast cancer patients [8]

Genomic and proteomic information, along with patient characteristics, are used by the field of personalized

medicine to tailor care. The patient's genetic peculiarities are taken into account when selecting medications or treatment programs, which lowers the possibility of side effects and ensures successful outcomes. Complicated inflammatory periodontal diseases are complex and damage both the soft tissue and bone of teeth. Genetics plays a significant role in periodontitis. Individualized care is provided based on each person's unique genetic profile through the use of molecular tests such AmpliChip CYP450 test, fluorescence in-situ hybridization (FISH), microarray testing, gene mapping, DNA profiling, and receptor gene amplification [9].

Indeed, as noted by Swanskin *et al.*, personalized medicine is receiving more and more attention. In order to treat patient diseases or predispositions, this signifies a significant shift away from "one size fits all" treatments and towards new strategies that can produce the best results: customized therapies [10]. The enormous increase in data in the health sector in recent years is one startling issue. According to certain reports, the healthcare industry is producing 48% more data each year [11]. According to Lopes-Junior, the present challenge is to provide more predictive diagnoses, treatments, and individualized care to targeted individuals and communities in order to transform the increasing medical data acquired in the health sector into clinical benefits for patients. [10]

It appears that everyone has a similar understanding of what personalized medicine is. Upon closer inspection, there are significant differences between the definitions

of personalized medicine that are already in use.

1. A medical approach that suggests customizing treatment, with choices and practices being adapted to the individual patient by use of genetic or other information, is called personalized medicine, for instance.
2. The customization of medical care to the unique needs of every individual patient." It does not actually refer to the process of developing medications or medical equipment that is specific to each patient. Instead, it entails the capacity to categorize people into subgroups that are differently or uniquely vulnerable to a given illness or responsive to a given course of therapy.
3. A type of treatment that prevents, detects, and treats disease by utilising data about an individual's genes, proteins, and surroundings.

These three definitions are enough to show how widely definitions of personalized medicine differ, even though there are many more out there.[12]

The FDA claims that by more precisely focusing on prevention and treatment, PM aims to increase patient benefits and lower hazards. PM aims to classify people into subpopulations that differ in how they react to a treatment agent for their particular ailment, rather than to develop novel medications for patients. For instance, about 20–30% of patients with breast cancer who have increased HER2 expression find Herceptin to be an incredibly helpful medication. However, due to HER2 gene alterations, certain patients with high HER2 are

naturally resistant to Herceptin. Thus, stratifying patients based on their molecular characteristics—both genetic and epigenetic—enables the best possible use of Herceptin in treating breast cancer. [8]

Advantages:

- Personalized medicine has the potential to enhance clinical practice efficiency and reduce healthcare costs by administering the appropriate medication at the precise dose and time [13].
- The efficacy of personalised medicine strategies surpasses that of traditional medicine, primarily due to the availability of several customised or personalised therapeutics, such as mutation-specific medications like ivacaftor to treat cystic fibrosis and autologous CAR-T cell transplant therapies for specific cancer types [1].
- Personalized medicine can be utilized not only for disease treatment but also for early disease detection and prevention [1].
- Personalized medicine gives the genetic differences amongst people to help with illness diagnosis, prophylaxis, and treatment [14].
- Improved diagnostic evaluation that enables earlier and more successful therapeutic interventions [14].
- Less medication side effects and greater pharmacological efficacy [14].

- It helps in detection of genetic predisposition and application of preventive measures [14].

Disadvantages:

One of the many challenges that come with personalized pharmaceuticals is getting regulatory bodies to authorize their regular use. In addition, there are several challenges to the industry's widespread adoption of personalized drugs by various healthcare stakeholders, including physicians, business executives, insurance providers, and patients [1].

- Personalized medicine cannot be produced without further study, particularly genetic investigations [14].
- The underlying biology of disease is not well understood.
- It has Restricted Resources.
- It requires more usage of recent diagnostic techniques [15].

Another difficulty for PM is dealing with social, legal, and moral issues [16].

Benefits

The benefits of personalized medicine are vast and transformative. Personalized medicine improves diagnostic accuracy and provides tailored treatment recommendations based on patient-specific attributes, leading to targeted therapy that enhances treatment efficacy, reduces adverse effects, supports better disease prognosis, and encourages greater patient involvement. It also lowers healthcare costs and fosters research and innovation [10]. By offering superior medical care, it significantly benefits both society and healthcare

systems. Furthermore, PM enhances the productivity of novel pharmaceutical development [6] and positively impacts the biopharmaceutical sector by reducing the time and cost associated with drug development [16]. PM enables better medication selection, reduces adverse effects, increases patient compliance, and shifts the focus of medicine from reactive treatment to proactive prevention. This not only improves cost-effectiveness but also builds patient confidence post-marketing through approval of novel therapeutic strategies and changing medical paradigms [8]. The approach avoids trial-and-error prescriptions, thereby preventing treatment delays and improving the quality of life, while also making care more affordable [17]. Although the net monetary benefit (NMB) of PM therapies ranges from zero to negative in some cases, particularly in the 'neoplasm' group, gene therapies were found to have more positive health impacts compared to other PM interventions despite their higher costs. Pricing policies might be necessary to reduce expenses in such interventions. The lack of statistically significant factors explaining the variance in cost-effectiveness suggests that PM, as a term, might be too broad; categorizing it further could help identify profitable investment areas [18].

In terms of applications, personalized medicine facilitates early disease detection through surveillance, supports improved treatment strategies, and offers better health outcomes compared to non-personalized approaches. It optimizes treatment by using the right drug in the right dosage, especially accounting for

genetic variations that influence metabolism [6]. PM also promotes adherence to preventive measures in at-risk patients, utilizes pharmacogenomics in cancer therapy, and supports the development of companion diagnostics [19]. It aims to eliminate side effects, minimize pharmacological risks, and ensures treatment is genetically tailored, including precise dosage administration and conceptual drug efficacy validation [9]. Ultimately, personalized medicine integrates an inclusive therapeutic approach based on genetic information [20], and its central philosophy is to design treatments that are as unique as the patient's symptoms—leveraging targeted strategies for better disease control. It leads to improved diagnostic techniques, timely detection, advanced drug development methods, and more precise treatments tailored to the patient's genetic profile [21]

Market Trend

The global personalized medicine market was estimated at USD 529.28 billion in 2023, and it is expected to increase at an 8.20% CAGR from 2024 to 2030. The personalized medicine market is primarily driven by the increasing demand for novel drug discoveries to tackle the global rise in cancer and other disorders. Furthermore, various collaborations between academics and market companies are expected to boost the personalized medicine market growth (Table 1).

Market Concentration & Characteristics

The market grows at a medium rate, and the pace is increasing. Due to ground-breaking innovations, the market for personalized medicine is expanding rapidly.

Tailored medicines, diagnostics, and preventive measures are driven by cutting edge technologies such as proteomics, genomics, and artificial intelligence. This changing environment, which is influencing healthcare through previously unheard-of levels of effectiveness and precision, presents an abundance of opportunities for experts and investors.

U.S. Personalized Medicine Market Trends

It is predicted that the U.S. personalized medicine market would expand between 2024 and 2030 due to the existence of major players like Abbott Laboratories, GE Healthcare, Illumina, Inc., ASURAGEN, Inc., Danaher, and 23andMe, Inc. Important businesses are joining forces more frequently to increase access to personalized medicine through alliances, collaborations, and agreements.

Europe Personalized Medicine Market Trends

Europe's Market Trends for Customized Medicine The market for customized medication in Europe is anticipated to expand significantly between 2024 and 2030 at a compound annual growth rate (CAGR of substantial). Moreover, during the course of the projected period, the existing states of development in Germany, the UK, and France should present profitable prospects for market expansion.

The UK's personalized medicine market is expected to grow in concert with the European market as a result of the increasing advancement of companion diagnostics (CDxs) and the subsequent launch of molecular diagnostics by a major player in the industry.

The personalized medicine market in China

The government's encouragement and participation in cross-border international partnerships for preventative and personalized medicine are responsible for the lucrative growth of the personalized medicine sector in China. The increased acceptance of Western medicine and anticipated changes to Chinese insurance laws are also anticipated to fuel industry expansion.

The Japan personalized medicine market

From 2024 to 2030, the personalized medicine market in

Japan is predicted to expand at a significant CAGR. This share is the result of multiple market players actively pursuing an expansion strategy to fortify their positions in the Asia Pacific area. For example, in October 2023, NTT Corporation (Japan) signed a contract to create the Japan Precision Medicine Platform (JPP) with BC Platforms AG, PRIME-R, and Bioxcellerator [25]

Table 1 – Attributes and Details

Attribute	Details
Global Personalized medicine market (2023)	US\$ 327.7 Billion
Global Personalized medicine market (2033)	US\$ 690.9 Billion
Global personalized medicine market CAGR (2023 to 2033)	7.8%
USA personalized medicine market CAGR (2023 to 2033)	6.9%
Key companies profile	<ul style="list-style-type: none">• GE Healthcare• Illumina, Inc.• ASURAGEN, INC.• Abbott Dako A/S• Exact Science Corporation• Cepheid, Inc.• Decode Genetics, Inc.• QIAGEN• Exagen Inc.• Precision Biologics• Celera Diagnostics LLC• Biogen

- Genelex
- Genentech, Inc.
- 23andMe, Inc.

Market Segments Covered in Personalized Medicine Market Analysis

1) Personalized Medical Care

- * Genetic Testing for Diagnostics
- * Diagnostics DTC
- * Occult Lab Services
- * Mysterious Laboratory Tests

2) Personalized Medical therapeutic

- * Pharmaceuticals
- * Genomic Medicine in Pharma
- * Medical Equipment

3) Personalized Nutrition Plans and Health

- * Complementary and
- * Alternative Medicine in Retail Nutrition (26)

Future Aspects

Personalized medicine is rapidly advancing, promising significant improvements in patient care and outcomes. This approach tailors medical treatment to the individual characteristics of each patient, such as their genetic profile, lifestyle, and environmental factors. One of the most notable future aspects of personalized medicine is the integration of advanced genomics and biotechnology, which enable more precise and predictive diagnostics. For instance, genomic sequencing can identify genetic predispositions to various diseases, allowing for early

intervention and customized treatment plans [27]. Moreover, the development of personalized therapies, including targeted drugs and gene editing technologies like CRISPR, is transforming treatment paradigms. These innovations aim to address the underlying causes of diseases at a molecular level rather than just managing symptoms [28]. Additionally, the incorporation of artificial intelligence (AI) and machine learning into personalized medicine is enhancing the ability to analyze complex data sets, leading to more accurate predictions and individualized treatment strategies [29].

However, these advancements also present challenges such as ethical considerations, data privacy concerns, and the need for equitable access to personalized treatments. Addressing these issues will be crucial to realizing the full potential of personalized medicine in improving health outcomes for diverse populations [30].

In the long run, patients, doctors, biopharmaceutical companies, and society at large are the stakeholders most likely to profit. Medical patients are significantly impacted by PM.

In the rapidly developing field of genomic and molecular medicine, it makes sense for practitioners to gravitate towards specialization in clinical

practice. In order to ensure higher quality, pharmaceutical medicines must be more effective and have fewer side effects, which largely determine patient satisfaction with illness care.

Therapy for those affected rises in tandem with the usage of customized medication. When personalized treatment is being used, more tests ought to be done to diagnose the ailment. Utilizing customized medication will be advantageous as it will enable the user to take action [23]

Enabling doctors to create more individualized treatment plans for individual patients based on their DNA profiles will lead to better health results. A significant amount of genetic patient data will soon become accessible thanks to the data generated by this new PM approach for patient care. We will be able to direct best practices for different therapeutic goals and keep highlighting positive patient results if we have a thorough grasp of preventative medicine [5].

Conclusion

The use of application of personalized technology for the diagnosis of cancer has contributed towards a paradigm shift in the treatment of cancer. Medical experts have the freedom of choosing from a wide range of medications by using state of the art techniques which involve genomic analysis, bioinformatics and advanced imaging techniques. By incorporating the recent developments and adoption of advanced methodologies personalized medicine has achieved a greater potential of mitigating the

chances of cancer and enhanced the safety and efficiency of the treatment.

The developments in the area of targeted medicines and the approval for the usage of precision medicines created the opportunity for the betterment of treatments offered to patients also making healthcare safe, efficient and convenient. The application of the modern advancements enables the discovery of underlying conditions which lead to the development of a disorder. Through proper diagnosis and early detection of the symptoms and factors responsible for the disorder can be arrested in a primitive stage to prevent the development into a stage wherein the treatment becomes difficult.

The addition of technology and acquired knowledge has led to a shift in the use of medicine with the passage of time. The introduction of precision medicines has not only changed the traditional medical diagnosis technique but also has a significant economic impact through the development of cost effective and trustworthy diagnostic methods.

The techniques which have enabled the development in the areas of cell and gene therapy which are a result of the higher investments, good clinical trial methods and an effort to target the number of diseases to introduce personalized medicines.

Personalized medicine has been developed into a technique of medicine administration which has the potential to cater to the requirement of patients who

expect outcomes such as cost effectiveness, time savings and safety. The revolution achieved will not only enable us to achieve entrepreneurial benefits but also promotes awareness among the patients about the efficacy and performance of personalized drug. The improvement in the field of personalized medicines has a positive effect and has enabled a paradigm shift in the healthcare system.

Despite having tremendous improvements in the field of medicines and healthcare, few of the concerns exist in the minds of patients. The concerns have raised due to the incorporation of genetically modified organisms (GMO). Since there is not much awareness and information exists in the minds of people there is a hindrance to follow the practice of personalized medicine. However, with proper knowledge and communication of the techniques and advancements in the field of personalized medicine can lead to a better trust in the minds of the people.

References:

1. Goetz LH, Schork NJ. Personalized medicine: motivation, challenges, and progress. *Fertility and Sterility*. 2018;109(6):952–63. doi:10.1016/j.fertnstert.2018.05.006. PMID: 29935653; PMCID: PMC6366451.
2. Ho D, Quake SR, McCabe ERB, Chng WJ, Chow EK, Ding X, et al. Enabling technologies for personalized and precision medicine. *Trends in Biotechnology*. 2020;38(5):497–518.
3. Rogers K. Personalized medicine [Internet]. Encyclopaedia Britannica. 2024 Jan 29 [cited 2024 Jan 30]. Available from: <https://www.britannica.com/science/personalized-medicine>
4. Arjmand B, Goodarzi P, Mohamadi-Jahani F, Falahzadeh K, Larijani B. Personalized regenerative medicine. *Acta Medica Iranica*. 2017;55(3):144–9.
5. Erden A. Personalized medicine. *Yale Journal of Biology and Medicine*. 2015;88(4):349. PMID: 26930723; PMCID: PMC4654182.
6. Gajare SR, Deshmukh AS, Shinde CK. Review on personalized medicine. *International Journal of Pharmaceutical Sciences Review and Research*. 2021;69(1):23. doi:10.47583/ijpsrr.2021.v69i01.023.
7. Abul-Husn NS, Kenny EE. Personalized medicine and the power of electronic health records. *Cell*. 2019;177(1):58–69. doi:10.1016/j.cell.2019.02.039. PMID: 30901549; PMCID: PMC6921466.
8. Mathur S, Mathur S. Personalized medicine could transform healthcare: a review. *Biomedical Reports*. 2017;7:3–5. doi:10.3892/br.2017.922.
9. Gomathi GD, Gopalakrishnan S, Sudhakar U. Personalized medicine – a recent revolution in periodontics. *International Journal of*

doi:10.1016/j.tibtech.2019.12.021. PMID: 31980301; PMCID: PMC7924935.

Periodontology and Implantology. 2019;4(3):69–72.

10. Stefanicka-Wojtas D, Kurpas D. Personalised medicine: implementation to the healthcare system in Europe (focus group discussions). *Journal of Personalized Medicine*. 2023;13(3):380. doi:10.3390/jpm13030380. PMID: 36983562; PMCID: PMC10058568.

11. Abul-Husn NS, Kenny EE. Personalized medicine and the power of electronic health records. *Cell*. 2019;177(1):58–69. doi:10.1016/j.cell.2019.02.039. PMID: 30901549; PMCID: PMC6921466.

12. Redekop WK, Mladsi D. The faces of personalized medicine: a framework for understanding its meaning and scope. *Value in Health*. 2013;16(6):S4–9. doi:10.1016/j.jval.2013.06.005.

13. Iriart JAB. Precision medicine/personalized medicine: a critical analysis of movements in the transformation of biomedicine in the early 21st century. *Cadernos de Saúde Pública*. 2019;35(3):e00153118. doi:10.1590/0102-311X00153118. PMID: 30916181.

14. Salari P, Larijani B. Ethical issues surrounding personalized medicine: a literature review. *Acta Medica Iranica*. 2017;55(3):209–17.

15. Research and Markets. Personalized medicine market size and share analysis: global forecast 2025–2033 [Internet]. 2025 [cited 2025 Jan 10]. Available from: <https://www.researchandmarkets.com/reports/5952081/personalized-medicine-market-size-share>

16. Agyeman AA, Ofori-Asenso R. Perspective: does personalized medicine hold the future for medicine? *Journal of Pharmacy and Bioallied Sciences*. 2015;7(3):239–44. doi:10.4103/0975-7406.160040. PMID: 26229361; PMCID: PMC4517329.

17. Yousif T, Bizanti K, Elnazir B. Uses of personalized medicine in current pediatrics. *International Journal of Clinical Pediatrics*. 2016;5(1):1–5.

18. Thokala P, Duenas A, Sculpher M. Value in precision medicine: selected approaches, challenges, and opportunities. *Value in Health*. 2022;25(2):189–96. doi:10.1016/j.jval.2022.01.006.

19. Payne K, Annemans L. Reflections on market access for personalized medicine: recommendations for Europe. *Value in Health*. 2013;16(6):S32–8.

20. Boomika S, Ezhilarasi S, Gokulnath S, et al. Review on personalised medicine for cancer treatment. *International Journal of Drug Development and Research*. 2022;14(9):976.

21. Badhe P, Otari K, Badhe A. Personalized medicine: the future of modern medicine. *Authorea*. 2021 Dec 13.

22. Allied Market Research. Personalized medicine market size and growth insights 2031 [Internet]. 2022 [cited 2024 Jan 2]. Available from:

<https://www.alliedmarketresearch.com/personalized-medicine-market-A13388>

23. Di Sanzo M, Cipolloni L, Borro M, La Russa R, Santurro A, Scopetti M, et al. Clinical applications of personalized medicine: a new paradigm and challenge. *Current Pharmaceutical Biotechnology*. 2017;18(3):194–203. doi:10.2174/1389201018666170224105600.

24. Parmar P, et al. Personalized medicine: time for one person, one medicine. *International Journal of Pharmaceutics and Drug Analysis*. 2021;9(2):86–92. doi:10.47957/ijpda.v9i2.462.

25. Grand View Research. Personalized medicine market size, share and trends analysis report [Internet]. 2025 [cited 2025 Jan 5]. Available from: <https://www.grandviewresearch.com/industry-analysis/personalized-medicine-market>

26. Future Market Insights. Personalized medicine market outlook from 2025 to 2035 [Internet]. 2025 [cited 2025 Jan 8]. Available from: <https://www.futuremarketinsights.com/reports/personalized-medicine-market>

27. Collins FS, Varmus H. A new initiative on precision medicine. *New England Journal of Medicine*. 2015;372(9):793–5. doi:10.1056/NEJMp1500523.

28. Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. *Science*. 2014;346(6213):1258096.

29. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. *Nature*. 2017;542(7639):115–8.

30. Williams J. Ethical and social issues in personalized medicine. *Journal of Medical Ethics*. 2019;45(4):248–53.

How to cite this article:

Harshitha KS, Gowtham Kumar DK, Keerthana GR, Harshitha MR, Harish Gowda SM, Suhas NS. Personalized medicine: Revolutionizing treatment approaches for individualized patient care. *J Adv Pharm Drug Dev*. 2025;1(1):27–37. doi:10.64842/snz3xb84